A STRONG CONTAINMENT PROPERTY FOR DISCRETE AMENABLE GROUPS OF AUTOMORPHISMS ON W* ALGEBRAS

EDMOND E. GRANIRER

This paper is dedicated with affection and gratitude to my father Dr. Jacob Granirer

ABSTRACT. Let G be a countable group of automorphisms on a W^* algebra \mathcal{M} and let ϕ_0 be a w^*G_δ point of the set of G invariant states on \mathcal{M} which belong to w^* cl Co E, where E is a set of (possibly pure) states on \mathcal{M} . If G is amenable, then the cyclic representation π_{ϕ_0} corresponding to ϕ_0 is contained in $\{\bigoplus \pi_{\phi}; \phi \in E\}$. This property characterizes amenable groups. Related results are obtained.

Introduction. Let \mathcal{M} be an infinite dimensional W^* algebra, \mathcal{M}^* its Banach space dual, G a group of automorphisms $g \colon \mathcal{M} \to \mathcal{M}$, and E a set of states on \mathcal{M} such that $G^*E \subset E$. Denote by S_E^G the set of states ϕ in w^* cl Co E (the w^* closure of the convex hull of E) which are G-invariant, i.e. $\phi(gx) = \phi(x)$ for all g in G and x in \mathcal{M} .

We call ϕ_0 in S_E^G a w^*G_δ point of S_E^G if there is a sequence $J=\{x_n\}$ in M such that $\{\phi_0\}=S_E^G\cap J^0$, where $J^0=\{\phi\in M^*; \langle\phi,J\rangle=0\}$. This just means that the w^* topology restricted to S_E^G is first countable at ϕ_0 . Denote by $w^*G_\delta(S_E^G)$ the set of all such points. We note that ϕ_0 being in $w^*G_\delta(S_E^G)$ depends only on the w^* topology restricted to S_E^G and does not depend a priori, on what happens in w^* cl Co E. Furthermore $w^*G_\delta(S_E^G)$ may be void. If for some countable $J\subset M$ the set $(S_E^G\cap J^0, w^*)$ is separable metric or even if it has the RNP (even the WRNP is enough in some cases; see the sequel for notations), then $w^*G_\delta(S_E^G)\neq\varnothing$.

If $\phi \in \mathcal{M}^*$ is positive let π_{ϕ} be the GNS representation determined by ϕ (Pedersen [12, 3.3.3]).

The main result of this paper is (a refinement of) the following

THEOREM. Let $\phi_0 \in w^*G_{\delta}(S_E^G)$. Then π_{ϕ_0} is contained (not only weakly contained à la Fell) in the direct sum $\{\bigoplus \pi_{\phi}; \phi \in E\}$ provided G is countable and amenable.

If G is any nonamenable group then there is even an abelian $\mathcal{M} = L^{\infty}(X\mu)$ for some nonatomic probability space (X, B, μ) on which G acts ergodically and measure preservingly such that if E is the set of all pure states on \mathcal{M} then $w^*G_{\delta}(S_E^G) = \{\mu\} = S_E^G$, yet π_{μ} is not contained (but only weakly contained) in $\{\bigoplus \pi_{\phi}; \phi \in E\}$.

Received by the editors November 4, 1985.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 46L30, 46L40, 46L55; Secondary 46L10.

Several corollaries of this result follow and the unifying thread of them all is that they *characterize* the amenability of G in the class of countable groups. Furthermore they generalize to the noncommutative case our results in [9].

Corollary 1 deals with the case where E consists of pure states on M. We show that in this case the "support" of any such $\phi_0 \in w^*G_\delta(S_E^G)$ is a countable set $R \subset \hat{M}$ (the irreducible representations of M modulo unitary equivalence) such that $R = \bigcup R_k$, a disjoint union of finite G invariant subsets R_k , provided G is countable and amenable. Again in the absence of amenability this " w^*G_δ -finite invariant" property of points in $w^*G_\delta(S_E^G)$ fails (even for abelian M). This corollary is a generalization to the nonabelian case of (an improved version of) our results in [9].

The remainder of the corollaries deal with the case that $S_E^G \cap J^0$ has the RNP (or S_E^G has the WRNP under the additional assumption that S^G is a simplex). In this case $w^*G_{\delta}(S_E^G) \neq \emptyset$.

One of the main tools in the proofs is the " w^*G_{δ} sequential property" of countable (left) amenable semigroups introduced in [9], a property which characterizes amenability in the class of countable groups. As shown in [18, pp. 47–48] there are noncountable abelian (a fortiori amenable) groups which do not possess this property.

In the end we point out that in case $E \subset \mathcal{M}_*$ consists of *normal* states better results are available and the amenability of G does not come into play.

Definitions and notations. M will always denote an infinite dimensional W^* algebra, M^* its Banach space dual (for the unexplained notations we follow Pedersen [12]), and $S_M = S \subset M^*$ the set of states. If $E \subset M^*$, let Co E denote the convex hull of E and w^* cl Co E the $w^* = \sigma(M^*, M)$ closure of Co E. (If X, Y are linear spaces in duality, $\sigma(X, Y)$ is the weakest topology on X which renders all linear functions in Y continuous.) M_* denotes the predual of M.

If ϕ is a positive element in \mathcal{M}^* , then $(\pi_{\phi}, H_{\phi}, h_{\phi})$ will denote the (GNS) cyclic representation induced by ϕ [12, 3.3.3]. It acts on the Hilbert space H_{ϕ} and is such that $\phi(x) = \langle \pi_{\phi}(x)h_{\phi}, h_{\phi} \rangle$, where $h_{\phi} \in H_{\phi}$ is the cyclic vector.

Let Aut M be the set of all automorphisms of M. Let $G \subset \text{Aut M}$ be a semigroup. If $g \in G$ let $g^* \colon M^* \to M^*$ be defined by $(g^*\phi)(x) = \phi(gx)$ for all x in M.

If $E \subset M^*$ let $G^*E = \{g^*\phi; g \in G, \phi \in E\}$. $G^*\phi = \phi$ will just mean that $g^*\phi = \phi$ for all g in G. If $E \subset S$ let $S_E^G = \{\phi \in w^* \operatorname{cl} \operatorname{Co} E; G^*\phi = \phi\}$ and $S^G = \{\phi \in S; G^*\phi = \phi\}$ the set of all G invariant states.

If $K \subset S$ then ϕ_0 is a w^*G_δ point of K if there are x_n in M and scalars α_n , $n = 1, 2, 3, \ldots$, depending on ϕ_0 , such that $\{\phi_0\} = \{\phi \in K; \phi(x_n) = \alpha_n, n \ge 1\}$. $w^*G_\delta(K)$ denotes the set of all such ϕ in K. Since $\phi(I) = 1$ for all ϕ in S, $\phi_0 \in w^*G_\delta(K)$ iff there is a separable subspace $J \subset M$ such that $J^0 \cap K = \{\phi_0\}$, where $J^0 = \{\phi \in M^*; \phi(x) = 0 \text{ for all } x \text{ in } J\}$.

 \hat{M} will denote the set of all irreducible unitary representations of M modulo unitary (spatial in [12, 3.3.6]) equivalence.

If (π_1, H_1) , (π_2, H_2) are unitary representations of M [12, 3.3.1] we write $\pi_1 \leq \pi_2$ if π_1 is unitarily equivalent to a subrepresentation of π_2 . If $g \in \text{Aut } M$ and (π, H) a representation of M, then $\hat{g}\pi$ is the representation of M on H given by $(\hat{g}\pi)(x) = \pi(gx)$ i.e. $g\pi = \pi \circ g$. Note that if $(\pi_1 H_1)$, $(\pi_2 H_2)$ are unitarily equivalent representations (denoted by \sim), i.e. for some unitary $u: H_1 \to H_2$, $u\pi_2(x)u^* = (\pi_1 H_1) + (\pi_2 H_2) + (\pi_2 H_2) + (\pi_2 H_1) + (\pi_2 H_2) + (\pi_2 H_1) + (\pi_2 H_2) + (\pi_2 H_2) + (\pi_2 H_1) + (\pi_2 H_2) + (\pi_2 H_2) + (\pi_2 H_1) + (\pi_2 H_2) + (\pi_2 H_2) + (\pi_2 H_1) + (\pi_2 H_2) + (\pi_2 H_2) + (\pi_2 H_1) + (\pi_2 H_1) + (\pi_2 H_2) + (\pi_2 H_1) + (\pi_2 H_1) + (\pi_2 H_2) + (\pi_2 H_1) + (\pi_2 H_2) + (\pi_2 H_1) + (\pi_2 H_2) + (\pi_2 H_1) + (\pi_2 H_1) + (\pi_2 H_2) + (\pi_2 H_1) + (\pi_2 H_1) + (\pi_2 H_2) + (\pi_2 H_1) + (\pi_2 H_1) + (\pi_2 H_2) + (\pi_2 H_1) + (\pi_2$

 $\pi_1(x)$ for all x then $u\pi_2(gx)u^* = \pi_1(gx)$ for all x. Thus $\hat{g}\pi_1, \hat{g}\pi_2$ are equivalent. Thus every g in Aut \mathcal{M} acts on $\hat{\mathcal{M}}$ (where unitarily equivalent representations are identified).

If E is a set of pure states, denote by \hat{E} the subset of \hat{M} given by $\hat{E} = \{\pi_{\phi}; \phi \in E\}^{\wedge} = \{\pi_{\phi}; \phi \in E\}/\sim$. If $g \in \text{Aut } M$ and E is a set of pure states, then the equality $\hat{g}\hat{E} = \hat{E}$ will mean that $\{\pi_{\phi}; \phi \in E\}^{\wedge} = \{\pi_{\phi} \circ g; \phi \in E\}^{\wedge}$ (i.e. equality of sets in \hat{M}).

If M is abelian then \hat{M} coincides with the set of all multiplicative states on M. In general $\phi \to \pi_{\phi}$ will be a many-to-one map when ϕ ranges over the pure states of M.

When no ambiguity arises we write equality when we mean \sim . B(H) will denote the bounded linear operators on the Hilbert space H. The semigroup S is left (right) amenable if there is a left (right) invariant state (or mean) (see M. M. Day [6] for more on this topic). A convex set K of a Banach space X has the (weak) Radon-Nikodým property (WRNP) RNP if for any finite measure space $(XB\mu)$ any countably additive μ -continous map $m: B \to X$, such that $\mu(A)^{-1}m(A) \in K$ if $\mu(A) \neq 0$, is represented by a Bochner (Pettis) integrable function. For RNP (WRNP) sets see Stegall [16] (E. Saab [15]).

Main results.

THEOREM 1. Let M be a W^* algebra and $G \subset \operatorname{Aut} M$ a group of automorphisms $g \colon M \to M$. Let E be a set of states on M such that $G^*E \subset E$ and denote $S_E^G = \{\phi \in w^* \operatorname{cl} \operatorname{Co} E; G^*\phi = \phi\}$.

- (a) If G is countable and amenable and $\phi_0 \in w^*G_\delta(S_E^G)$ then there is a countable set $E_0 \subset E$ such that $\pi_{\phi_0} \leq \{\bigoplus \pi_{\phi}; \phi \in E_0\}$ and π_{ϕ_0}, π_{ϕ} are not disjoint (see Pedersen [12,3.8.12]) for each ϕ in E_0 .
- (b) If S is any nonamenable group then there is some nonatomic probability space $(XB\mu)$ on which S acts ergodically as measure preserving transformations such that if E is the set of all pure states on $M = L^{\infty}(X)$ then $S_E^G = w^*G_{\delta}(S_E^G) = \{\mu\}$, yet π_{μ} is not contained in $\{\bigoplus \pi_{\phi}; \phi \in E\}$.

REMARKS. (i) Note that E need not be w^* closed but only G^* invariant.

- (ii) It is enough in (a) that G be only a right amenable semigroup.
- (iii) We show in (a) that there is some $h_0 \in \{\bigoplus H_{\phi}; \phi \in E_0\}$ such that $\phi_0(x) = \langle \pi(x)h_0, h_0 \rangle$ for all x in M, where $\pi = \{\bigoplus \pi_{\phi}; \phi \in E_0\}$.

PROOF. Let G be right amenable. Then the semigroup G^* is left amenable. By our Theorem 1 in [9] G^* has the w^*G_δ sequential property. Thus $\phi_0 = w^* \lim \phi_n$ where ϕ_n is a sequence in Co E. A result of Akemann, Dodds, and Gamelin [1] implies that even $w \lim_n \phi_n = \phi_0$, where $w = \sigma(M^*, M^{**})$ (while $w^* = \sigma(M^*, M)$). It follows then that there exists a sequence ψ_n in $\operatorname{Co}\{\phi_n\} \subset \operatorname{Co} E$ such that $\|\psi_n - \phi_0\| \to 0$. Each ψ_n is a convex combination of a finite subset E_n of E. Let $E_0 = \bigcup_{1}^{\infty} E_n$. Thus if ϕ appears as a component in several ψ_n 's, it appears in E_0 only once.

Let $\pi = \{\bigoplus \pi_{\phi}; \phi \in E_0\}$ where $(\pi_{\phi}, H_{\phi}, h_{\phi})$ is the cyclic representation induced by ϕ . Each ψ_n is a vector state on the C^* algebra $\pi(\mathcal{M})$ (see [12, (1.5.7)]) acting on the Hilbert space $H = \{\bigoplus H_{\phi}; \phi \in E_0\}$, i.e. $\psi_n(x) = \langle \pi(x)g_n, g_n \rangle$ for some g_n in H (see Remark 1). Furthermore $\phi_0(x)$ is a state on the C^* algebra $\pi(\mathcal{M})$ since if $\pi x = 0$, then $\phi(x) = 0$ for all ϕ in E_0 ; hence $\psi_n(x) = 0$ for all n, and $\phi_0(x) = 0$. But we claim that $\|\psi_n - \phi_0\| \to 0$ in the norm of $\pi(M)$. This is readily implied by the fact that π is an *open* map since $\pi(M)$ is a C^* algebra [12, 1.5.7].

We now apply Theorem D of R. Kadison [10, p. 307] and get that ϕ_0 is also a *vector* state on $\pi(M)$ acting on H, i.e. there is some $h_0 \in H$ such that $\phi_0(x) = \langle \pi(x)h_0, h_0 \rangle$.

If $\langle \pi_{\phi_0} H_{\phi_0} h_{\phi_0} \rangle$ is the cyclic corresponding to the state ϕ_0 on \mathcal{M} then $\phi_0(x) = \langle \pi_{\phi_0}(x) h_{\phi_0}, h_{\phi_0} \rangle = \langle \pi(x) h_0, h_0 \rangle$. It follows by Proposition 3.3.7 of [12] that π_{ϕ_0} is unitarily equivalent to π restricted to $[\pi(\mathcal{M})h_0] \subset H$. Hence $\pi_{\phi_0} \leq \{\bigoplus \pi_{\phi}; \phi \in E_0\}$. Let $E_0 = \{\eta_n; n = 1, 2, \ldots\}$ and $(\pi_n, H_n, h_n) = (\pi_{\eta_n}, H_{\eta_n}, h_{\eta_n})$. Then there are $v_n \in H_n$ such that $h_0 = \sum_h v_n$, $1 = \|h_0\|^2 = \sum_h \|v_n\|^2$, and $\phi_0(x) = \langle \pi(x)h_0, h_0 \rangle = \sum_n \langle \pi(x)v_n, v_n \rangle = \sum_n \langle \pi_n(x)v_n, v_n \rangle$. Discard now from E_0 all η_n 's for which the state $\langle \pi_n(x)v_n, v_n \rangle$ is 0 on $\pi_n(\mathcal{M})$ and let E_0 stand for the new set. If $\gamma_n(x) = \langle \pi_n(x)v_n, v_n \rangle = \langle \pi(x)v_n, v_n \rangle$ then $\gamma_n(x) \leq \phi_0(x)$ if $x \geq 0$ hence $\pi_{\gamma_n} \leq \pi_{\phi_0}$ by Pedersen [12, (3.3.8)] and $\pi_{\gamma_n} \leq \pi_{\eta_n}$ since π_{γ_n} is unitarily equivalent to π_n restricted to $[\pi_n(\mathcal{M})v_n]$ [12, 3.3.7]. This set E_0 will satisfy part (a) of the theorem.

(b) If G is any nonamenable group, there is by a result of Losert and Rindler [11] and J. Rosenblatt [14] a nonatomic probability space (X, B, μ) on which G acts ergodically as a group of measure preserving transformations $g\colon X\to X$ such that there exists a unique G-invariant state on $L^\infty(X)$, which is necessarily μ . Let E be the set of all pure states on $L^\infty(X)=M$. Then $S_E^G=\{\mu\}=w^*G_\delta(S_E^G)$. Assume now that $\pi_\mu\leq\{\bigoplus\pi_\phi;\phi\in E\}$. Then, since each π_ϕ is one dimensional there are $\beta_n>0, \sum\beta_n=1$ such that $\mu(f)=\int f\,d\mu=\sum_{n=1}^\infty\beta_n\phi_n(f)$ for each f in M for some multiplicative ϕ_n in E. But then our argument on p. 112 of [9] shows that the measure μ has to contain atoms, which cannot be.

REMARKS. (1) Let ϕ_1, \ldots, ϕ_m be states on the C^* algebra A and $\psi = \sum_1^m \alpha_i \phi_i$ with $\alpha_i > 0$ and $\sum_1^m \alpha_i = 1$. Then $\pi_\psi \leq \bigoplus_1^m \pi_{\phi_i}$: let $(\pi_i, H_i, h_i) = (\pi_{\phi_i}, H_{\phi_i}, h_{\phi_i})$, then $\phi_i(x) = \langle \pi_i(x)h_i, h_i \rangle$. If $h = \sum_1^m \sqrt{\alpha_i}h_i$ then since $\pi(x)H_i \subset H_i$ we have

$$egin{aligned} \langle \pi(x)h,h
angle &= \sum_{i,j} \sqrt{lpha_i lpha_j} \langle \pi_i(x)h_i,h_j
angle \\ &= \sum lpha_i \langle \pi_i(x)h_i,h_i
angle &= \psi(x). \end{aligned}$$

Thus $\pi_{\psi} \leq \bigoplus_{i=1}^{m} \pi_{i}$.

(2) With the notations of part (a) of the theorem let E (hence $E_0 = \{\eta_n\}$) consist only of *pure* states. Thus $\pi_n = \pi_{\eta_n}$ are irreducible. Since $\gamma_n(x) = \langle \pi_n(x)v_n, v_n \rangle$ are nonzero and $\pi_{\gamma_n} \leq \pi_n$ we get that $\pi_n \leq \pi_{\phi_0} \leq \{\bigoplus \pi_k; k \geq 1\}$ for all n, where $\phi_0(x) = \sum \gamma_n(x)$ and $\sum ||v_n||^2 = 1$.

Choose a maximal subsequence $\{\pi_{n_i}\}\subset \{\pi_n\}$ (possibly finite) such that π_{n_i}, π_{n_j} are not unitarily equivalent if $i\neq j$. If $\pi_n\sim \pi_{n_i}$ there is some $v_n^1\in H_{n_i}$ such that $\gamma_n(x)=\langle \pi_{n_i}(x)v_n^1,v_n^1\rangle$ and $\|v_n\|=\|v_n^1\|$. Hence if $\varepsilon_i(x)=\{\sum \gamma_n(x);\pi_n\sim \pi_{n_i}\}$ then $\varepsilon_i(x)=\sum_k\langle \pi_{n_i}(x)v_k^i,v_k^i\rangle$ for some sequence $v_k^i\in H_{n_i}$ with $\sum_k\|v_k^i\|^2<\infty$. Thus $\varepsilon_i\neq 0$ can be considered as a positive normal functional on $(\pi_{n_i},H_{n_i}h_{n_i})$ and $\varepsilon_i(1)=\sum_k\|v_k^i\|^2\neq 0,\ \phi_0(x)=\sum_i\varepsilon_i(x),\ \text{and}\ \phi_0(1)=1=\sum_i\varepsilon_i(1).$

Now let $Z_0 = \{z_{\alpha}; \alpha \in I\}$ be the set of all minimal central projections of the second dual \mathcal{M}^{**} of \mathcal{M}^{*} . For each g in G, g^{**} is an automorphism on \mathcal{M}^{**} [12, (7.4.5), p. 244] and hence $g^{**}: Z_0 \to Z_0$, one-to-one onto. Since $z_{\alpha}z_{\beta} = 0$ unless $\alpha = \beta$, $(g^{**}z_{\alpha})(g^{**}z_{\beta}) = 0$ unless $\alpha = \beta$ (see Dixmier [7, 5.2.4–5.2.8, p. 103]).

Let $z_{\alpha_i} \in Z_0$ be the central support of π_{n_i} . Then since ε_i is π_{n_i} -normal and is also in M^* we have $\varepsilon_i(xz_{\alpha_i}) = \varepsilon_i(x)$ for all x in M (where we consider $M \subset M^{**}$) and $\varepsilon_i(xz_{\alpha}) = 0$ if $\alpha \in I$ and $\alpha \neq \alpha_i$ for all x in M (see Takesaki [17, p. 125] and Akemann and Shulz [2, Proposition A1, p. 110 and Proposition A10, p. 116]). Now denote $\beta_j = \varepsilon_j(1) = \varepsilon_j(z_{\alpha_j})$ and fix some β_i . Let $F = \{\alpha_j; \beta_j = \beta_i\}$. Clearly F is finite since $\sum \beta_i = 1$. Let $g \in G$, then $g^{**}z_{\alpha_i} = z_{\delta}$ for some δ in I. But

$$\phi_0(z_{\alpha_i}) = \sum_{i} \varepsilon_j(z_{\alpha_i}) = \varepsilon_i(z_{\alpha_i}) = \beta_i = \phi_0(g^{**}z_{\alpha_i}) = \phi_0(z_{\delta}) = \sum_{i} \varepsilon_j(z_{\delta}).$$

But $\varepsilon_j(z_{\delta}) \neq 0$ for at most one j and since $\beta_i \neq 0$ there is such a j (see [7, 5.2.8]). Thus $g^{**}z_{\delta} = z_{\alpha_k}$, $\varepsilon_k(z_{\alpha_k}) = \beta_k = \beta_i$ for some k, and thus $\alpha_k \in F$. If $Z_F = \{z_{\alpha_j}; \alpha_j \in F\}$ then we have shown that $g^{**}Z_F \subset Z_F$ and since Z_F is finite and g^{**} is one-to-one, $g^{**}Z_F = Z_F$ for all g in G. This however implies that $\{\pi_{n_j} \circ g; \alpha_j \in F\} = \{\pi_{n_j}; \alpha_j \in F\}$ for all g, since π_{n_j} and $\pi_{n_j} \circ g$ are irreducible (see [12, (3.8.12), (3.13.3)]).

Now let β_{i_k} be a maximal set of different β_i 's. For each k let $F_k = \{\alpha_j; \beta_j = \beta_{i_k}\}$. Let $R_k = \{\pi_{n_j}; \beta_j = \beta_{i_k}\}$. Then the R_k are finite, pairwise disjoint sets such that $\bigcup_k R_k = \{\pi_{n_i}; i = 1, 2, \ldots\}$. Furthermore for each g in G and k, $\{\pi_{n_j} \circ g; \pi_{n_j} \in R_k\} = R_k$ (up to unitary equivalence). Each finite set R_k can be further partitioned into finitely many minimal G-invariant sets R_j^k , i.e. subsets such that $\{\rho \circ g; g \in G\} = R_j^k$ for each ρ in R_j^k and $\{\rho \circ g; \rho \in R_j^k\} = R_j^k$ for each g in G (all above equalities are up to unitary equivalence). We thus have

COROLLARY 1. (a) Let G be a group of automorphisms on the W^* algebra M and E a set of pure states on M such that $G^*E \subset E$ and let $S_E^G = \{\phi \in w^* \operatorname{cl} \operatorname{Co} E; G^*\phi = \phi\}$. Assume that $\phi_0 \in w^*G_\delta(S_E^G)$.

If G is countable and amenable then there is a countable subset $E_0 \subset E$ such that

$$\pi_{\psi} \leq \pi_{\phi_0} \leq \left\{ \bigoplus \pi_{\phi}; \phi \in E_0 \right\} \quad \textit{for all } \psi \in E_0 \ (\textit{by Theorem 1}(a)).$$

Furthermore $\{\pi_{\phi}; \phi \in E_0\}^{\wedge} = \hat{E}_0 = \bigcup_k R_k$ is a countable (or finite) disjoint union of finite minimal G invariant sets $R_k \subset \hat{M}$, i.e. the finite sets R_k satisfy $R_k \cap R_j = \emptyset$ if $k \neq j$, $\hat{g}R_k = R_k$, and $\{\rho \circ g; g \in G\} = R_k$ for all g in G, ρ in R_k and all k.

(b) No nonamenable group has the above "strong containment property" as part (b) of the previous theorem shows.

REMARKS. (1) G need only be a right amenable semigroup (as in Day [6]).

(2) Fix k and define in G the equivalence relation $g_1 \sim g_2$ iff $\rho \circ g_1 = \rho \circ g_2$ (are unitarily equivalent) for all ρ in R_k . Then G modulo \sim becomes a semigroup G_k of one-to-one maps on the finite set R_k . Thus G_k is a finite group and, if G

¹We acknowledge with thanks communications we had with Alan L. T. Paterson. The proof below and the statement of Corollary 1 are different than the ones suggested in these inspiring communications.

is a group, for each k, card R_k is the cardinality of a finite coset G/H_k for some subgroup $H_k \subset G$.

If $J \subset M$ denote $J^0 = \{ \phi \in M^*; \langle \phi, f \rangle = 0 \text{ for all } f \text{ in } J \}$.

- COROLLARY 2. Let $G \subset \operatorname{Aut} M$ be a semigroup and E a set of pure states on M. Assume that for some countable $J \subset M$, $S_E^G \cap J^0$ is nonvoid and has the RNP.
- (a) If G is countable and amenable then every subset $E_1 \subset w^* \operatorname{cl} E$ such that $G^*E_1 \subset E_1$ and $S_{E_1}^G \cap J^0 \neq \emptyset$ contains a finite subset $E_0 \subset E_1$ such that $\hat{g}\hat{E}_0 = \hat{E}_0$ for all g in G and $\{\pi_{\phi} \circ g; g \in G\} = \hat{E}_0$ for all ϕ in E_0 (i.e. \hat{E}_0 is a finite minimal G invariant subset of \hat{E}_1).
- (b) If G is any nonamenable group then the ergodic measure preserving action of G on $L^{\infty}(X) = M$, for the nonatomic probability space $(XB\mu)$ of Theorem 1(b), satisfies $S^G = \{\mu\}$ and has the RNP, yet for no finite set E_0 of pure states on M does $\hat{g}\hat{E}_0 \subset \hat{E}_0$, for all g in G (equivalently $G^*E_0 \subset E_0$), hold true.
- REMARKS. (i) w compact or norm separable w^* compact convex sets have the RNP (Stegall [16, Proposition 1.10]). (ii) G need only be right amenable. (iii) $S_{E_1}^G \neq \emptyset$ by the Markov-Kakutani-Day fixed point theorem, however $S_{E_1}^G \cap J^0 \neq \emptyset$ may not hold, hence we need to assume it.
- PROOF. (a) If $F = w^*\operatorname{cl} E$ then $S_E^G = S_F^G$; hence we can assume that E is w^* closed. Now subsets of closed bounded RNP sets have the RNP [16, p. 508]; hence $S_{E_1}^G \cap J^0 \neq \emptyset$ has the RNP. Since $S_{E_1}^G \cap J^0$ is w^* compact and has the RNP it necessarily has a w^*G_δ point ϕ_0 (see [16] or for alternate proof see [9, p. 116]) which is necessarily a w^*G_δ point of S_E^G , since J is countable. Corollary 1(a) finishes the proof.
- (b) The easy proof is left for the reader (or see remark (a) on p. 115 of [9]). \Box If we assume that \mathcal{M} is abelian then we get the following improvement (in a sense) of our Theorem 4 of [9]:
- COROLLARY 3. (a) Let M be an abelian W^* algebra, i.e. $M = L^{\infty}(\Gamma, \mu)$ for some locally compact Γ and positive Radon measure μ [17, Theorem 1.18, p. 119].
- Let E be a set of multiplicative states on M and $G \subset Aut M$ a countable (right) amenable semigroup such that the nonvoid set $S_E^G \cap J^0$ has the RNP for some countable $J \subset M$. If $E_1 \subset w^*$ cl E is any set such that $G^*E_1 \subset E_1$ and $S_{E_1}^G \cap J^0 \neq \emptyset$ then E_1 contains a finite subset E_0 such that $G^*E_0 \subset E_0$.
- (b) No nonamenable group has the above "RNP-finite invariant property" (by Corollary 2(b)).
- REMARKS. (1) If $\phi_0 \in S_E^G \cap J^0$ then the set $F = \operatorname{supp} \phi_0$ is a w^* closed subset of E such that $G^*F \subset F$ (where $\operatorname{supp} \phi_0$ is the smallest w^* closed set $E' \subset E$ such that $\phi_0 \in w^* \operatorname{cl} \operatorname{Co} E'$).
- (2) If $J = \{0\}$ then S_E^G need only have WRNP in order that Corollary 3(a) hold (see [9, Corollary 6]). We improve this in the next corollary.
- If we take $J = \{0\}$ and impose certain restrictions on E and on the action of G on M then we can replace the RNP by the WRNP:
- COROLLARY 4. (a) Let $G \subset \operatorname{Aut} M$ be a group such that S^G is a simplex. Let E be a set of pure states on M such that $u^*\phi u \in E$ for each unitary u in M and $\phi \in E$. Assume that $S_E^G \neq \emptyset$ and has the WRNP.

If G is countable and amenable then every set $E_1 \subset w^*$ cl E such that $G^*E_1 \subset E_1$ contains a finite subset E_0 such that $\hat{g}\hat{E}_0 = \hat{E}_0$ and $\{\hat{g}\pi_{\phi}; g \in G\} = \hat{E}_0$ for all g in G and ϕ in E_0 (i.e. such that \hat{E}_0 is finite minimal G invariant).

(b) No nonamenable group has the above property (by Corollary 2(b)).

PROOF. Since S^G is a simplex the positive cone $C^G = \{\bigcup \lambda S^G; \lambda \geq 0\}$ is a lattice, i.e. $\phi_1, \phi_2 \in C^G$ implies that $\phi_1 \wedge \phi_2$ exists and is in C^G (see Asimov and Ellis [3, pp. 49, 70]). We claim that $C_E^G = \{\bigcup \lambda S_E^G; \lambda \geq 0\}$ is also a lattice. In fact let $\phi_1, \phi_2 \in C_E^G$ and $\phi_0 = \phi_1 \wedge \phi_2 \in C^G$. We show that $\phi_0 \in C_E^G$. Clearly $\phi_0 \leq \phi_1$, hence by [12, 3.3.8], $\pi_{\phi_0} \leq \pi_{\phi_1}$, i.e. $\phi_0(x) = \langle \pi_{\phi_1}(x)\xi_1, \xi_1 \rangle$ for some $\xi_1 \in H_{\phi_1}$. Now for all $x, \phi_1(x) = \lim \phi_{\alpha}(x)$ where $\phi_{\alpha} \in \operatorname{Co} \lambda_1 E$ where $\lambda_1 = \|\phi_1\|$. Also, if $\pi_{\mu}(x) = 0$ for all $\mu \in E$ then $\pi_{\mu}(x^*x) = 0$ for all $\mu \in E$; thus $\mu(x^*x) = 0$ for all $\mu \in E$ hence $\phi_1(x^*x) = 0$ which implies, since $\phi_0 \leq \phi_1$, that $\phi_0(x^*x) = 0$. Thus by Cauchy-Schwarz, $\phi_0(x) = 0$. Hence $\phi_0 = 0$ on $\{\bigcap \operatorname{Ker} \pi_{\mu}; \mu \in E\}$. If $\phi_0 = 0$ then $\phi_0 \in C_E^G$. If $\phi_0 \neq 0$ we can assume that ϕ_0 is a state. Then ϕ_0 is a w^* limit of positive elements of type $\sum_1^n \langle \pi_{\mu_i}(x)\xi_i, \xi_i \rangle = \nu(x)$ with $\nu(1) = 1$ for some ξ_i in H_{μ_i} and μ_i in E, by Dixmier [7, 3.4.2 and 3.4.4, p. 66].

We now claim that $x \to \langle \pi_{\mu}(x) \xi_0 \xi_0 \rangle = \mu_0(x)$ belongs to w^* cl E for each $\mu \in E$ and $\xi_0 \in H_{\mu}$ such that $\|\xi_0\| = 1$. In fact there is a unitary $u \in B(H_{\mu})$ such that $u\xi_{\mu} = \xi_0$ and there is a net of unitaries $u_{\alpha} \in \mathcal{M}$ such that $\pi_{\mu}(u_{\alpha}) \to u$ strongly on H_{μ} by Kaplanski's density theorem [12, 2.3.3] and since π_{μ} is irreducible. But then $\pi_{\mu}(x)\pi_{\mu}(u_{\alpha})\xi_{\mu} \to \pi_{\mu}(x)\xi_0$ in norm. Thus for all x in \mathcal{M} , $\langle \pi_{\mu}(u_{\alpha}^*xu_{\alpha})\xi_{\mu},\xi_{\mu}\rangle \to \langle \pi_{\mu}(x)\xi_0,\xi_0\rangle$ as readily seen. (If $\|\xi_{\alpha}-\xi\|\to 0$ then for all bounded T, $\langle T\xi_{\alpha},\xi_{\alpha}\rangle \to \langle T\xi,\xi\rangle$.) It follows then that ϕ_0 is a w^* limit of a net in $\mathrm{Co}\{w^*$ cl $E\}$ hence $\phi_0 \in S^G \cap w^*$ cl $\mathrm{Co}\,E$ which by definition is S_E^G . We have shown that for all $\phi_1,\phi_2 \in C_E^G$, $\phi_1 \wedge \phi_2$ exists and is in C_E^G . But then $C_E^G - C_E^G$ (the linear span of C_E^G) is a lattice [3, p. 49]). But then $C_E^G - G_E^G$, over the reals, is an abstract L space [3, p. 70, Theorem 7.1 and p. 14, Theorem 4.7]. Now $S_E^G - S_E^G$ has the WRNP by Saab [15, Theorem 1(i)]. However this last set is just the closed unit ball of the abstract L space $C_E^G - C_E^G$. Thus the Banach lattice $C_E^G - C_E^G$ has the WRNP. We now apply Proposition 8 of Ghoussoub and Saab [8] and get that $C_E^G - C_E^G$ even has the RNP, and hence so does (each bounded subset) S_E^G . Now apply Corollary 2(a) with $J = \{0\}$. \square

REMARKS. S^G is a simplex at least in the case when (\mathcal{M}, G, α) is weakly asymptotically abelian (Pedersen [12, 7.13.1] or even if α_G is a large group of automorphisms of \mathcal{M} [12, 7.12.5 and 7.13.2]). However S^G may be a simplex, yet α_G need not be a large group of automorphisms (Takesaki [17, pp. 252–253]). S^G is a simplex if and only if the pair (\mathcal{M}, ϕ) is G-abelian (Bratteli-Robinson [4, Definition 4.3.6, p. 374]) for each $\phi \in S^G$, iff $E_{\phi}\pi_{\phi}(\mathcal{M})E_{\phi}$ is abelian for all $\phi \in S^G$ where E_{ϕ} is the projection from H_{ϕ} to $\{\xi \in H_{\phi}; u_{\phi}(g)\xi = \xi \text{ for all } g \text{ in } G\}$ (see [4, Corollary 4.3.11, p. 379]).

THE CASE WHERE $E \subset \mathcal{M}_{\star}$. If E is a set of *normal* states on \mathcal{M} then G need not be amenable and $G^*E \subset E$ need not hold in Theorem 1 and its corollaries. Stronger results are available in this case by adapting the results in [19] to the W^* algebra context. If $K \subset \mathcal{M}^*$, w^* seq cl K denotes the w^* sequential closure of K. \mathcal{M}_{\star} is considered as embedded in \mathcal{M}^* .

THEOREM 2. Let M be a W^* algebra and $G \subset \operatorname{Aut} M$ a countable set. Let $E \subset M_*$ be a set of (normal) states and $S_E^G = \{\phi \in w^* \operatorname{cl} \operatorname{Co} E; G^*\phi = \phi\}$.

If $\phi_0 \in w^*G_\delta(S_E^G)$ then $\phi_0 \in \operatorname{norm}\operatorname{cl}\operatorname{Co} E \subset \mathcal{M}_*$ and $\pi_{\phi_0} \leq \{\bigoplus \pi_{\phi}; \phi \in E_0\}$ for some countable set $E_0 \subset E$.

Furthermore, if for some countable $J \subset M$, $S_E^G \cap J^0$ has the WRNP or card $S_E^G \cap J^0 < 2^c$ and in fact if $S_E^G \cap J^0$ does not contain a "w* affine isomorph" of the "big" set $\mathcal{F} = \{\phi \in S_{l^\infty}; \phi(f) = 0 \text{ for } f \text{ in } c_0\} \subset (l^\infty)^*$ then there is some ϕ_0 in $S_E^G \cap J^0 \cap \operatorname{norm} \operatorname{cl} \operatorname{Co} E \subset M_*$ such that $\pi_{\phi_0} \leq \{\bigoplus \pi_{\phi}; \phi \in E_0\}$ for some countable $E_0 \subset E$.

REMARKS. $c_0 = \{f \in l^\infty; \lim_n f(n) = 0\}$ and S_{l^∞} is the set of states on l^∞ . By " w^* affine isomorph" we mean by a w^* - w^* continuous norm isomorphism into, $t^*: l^{\infty *} \to \mathcal{M}^*$, such that $t^*\mathcal{F} \subset S_E^G \cap J^0$, as in [19, Theorem 1.4(b)]. Note that $\mathcal{F} = w^*\operatorname{cl}\operatorname{Co}(\beta N \sim N)$ and $\operatorname{card} \mathcal{F} = 2^c$, where c is the cardinality of the continuum, as well known. G can be replaced by any set of w^* continuous operators on \mathcal{M} . This theorem is false for uncountable G.

PROOF. Any g in Aut \mathcal{M} is w^* continuous on \mathcal{M} [17, p. 135, Corollary 3.10]. It follows now that $\{\phi_0\} \subset w^*$ seq cl Co E since if not then by Theorem 1.4(b) of [19] the set $\{\phi_0\}$ would contain a w^* affine isomorph of \mathcal{F} , which cannot be. (We cannot apply our Theorem 1 here since G need not be amenable.) Thus $\phi_0 = w^* \lim \phi_n$ for some sequence ϕ_n in Co E. The rest of the proof is verbatim like that of Theorem 1.

If $S_E^G \cap J^0$ has the WRNP or $\operatorname{card}(S_E^G \cap J^0) < 2^c$ then apply Corollary 1.4' of [19] and get that there is some ϕ_0 in $S_E^G \cap J^0 \cap w^*$ seq cl Co E. But then, the proof of Theorem 1 shows that $\phi_0 \in \operatorname{norm} \operatorname{cl} \operatorname{Co} E$ and $\pi_{\phi_0} \leq \{\bigoplus \pi_{\phi}; \phi \in E_0\}$ for some countable set $E_0 \subset E$.

If $S_E^G \cap J^0$ does not contain a " w^* affine isomorph" of \mathcal{F} then apply Theorem 1.4(b) of [19] and get that there is some $\phi_0 \in S_E^G \cap J^0 \cap w^*$ seq cl Co E. For the rest argue as above.

ADDED IN PROOF. We have obtained the following result using results in [19] (which in turn use in part techniques of Ching Chou):

THEOREM. Let $G \subset \operatorname{Aut} M$ be a countable group and E a set of pure states on M such that $G^*E \subset E$ and $J \subset M$ countable.

(a) Assume that G is amenable: (i) If $\phi \neq S_E^G \cap J^0 \subset M_*$ then M contains minimal projections (in the absence of such, $S^G \cap J^0 \cap \{M^* \sim M_*\}$ contains a "w* affine isomorph of the big set \mathcal{F} "). (ii) $S^G \cap M_*^{\perp}$ contains a "w* isomorph of the big set \mathcal{F} ").

A fortiori no action of a countable amenable group on an infinite dimensional W^* algebra has a unique G invariant state on M.

(b) If G is any nonamenable group then the action of G on $L^{\infty}(X)$ of Theorem 1(b) violates both (a)(i) and (a)(ii).

REMARKS. 1. $\mathcal{M}^* \sim \mathcal{M}_*$ is the set theoretical difference of \mathcal{M}^* and $\mathcal{M}_* \subset \mathcal{M}^*$. \mathcal{M}_*^{\perp} is the set of singular elements of \mathcal{M}^* [17, p. 127].

2. This theorem improves our Theorem 3 in [9] which in turn is a result of K. Schmidt [20] and J. Rosenblatt [14]. Our only assumption on M is that it is infinite dimensional.

REFERENCES

- C. A. Akemann, P. G. Dodds, and J. L. B. Gamelin, Weak compactness in the dual space of a C* algebra, J. Funct. Anal. 10 (1972), 446-450.
- 2. C. A. Akemann and F. Schulz, Perfect C*-algebras, Mem. Amer. Math. Soc. No. 326 (1985).
- 3. L. Asimov and A. J. Ellis, Convexity theory and its applications in functional analysis, Academic Press, New York, 1980.
- 4. Ola Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics. I, Springer-Verlag, Berlin and New York, 1979.
- Cho-Ho Chu, A note on scattered C* algebras and the Radon Nikodym property, J. London Math. Soc. 24 (1981), 533-536.
- 6. M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544.
- 7. J. Dixmier, Les C*-algèbres et leurs représentations, 2nd ed., Gauthier-Villars, Paris, 1969.
- 8. N. Ghoussoub and E. Saab, On the weak Radon Nikodym property, Proc. Amer. Math. Soc. 81 (1981), 81-84.
- 9. E. E. Granirer, Geometric and topological properties of certain w* compact convex sets which arise from the study of invariant means, Canad. J. Math. 37 (1985), 107-121.
- 10. R. V. Kadison, States and repesentations, Trans. Amer. Math. Soc. 103 (1962), 304-319.
- 11. V. Losert and H. Rindler, Almost invariant sets, Bull. London Math. Soc. 13 (1981), 145-
- G. K. Pedersen, C*-algebras and their automorphism groups, Academic Press, New York, 1979.
- R. Phelps, Lectures on Choquet's theorem, Van Nostrand Math. Studies, No. 7, Van Nostrand, Princeton, N. J., 1966.
- 14. J. Rosenblatt, Uniqueness of invariant means for measure preserving transformations, Trans. Amer. Math. Soc. 265 (1981), 623-636.
- E. Saab, Some characterisations of weak Radon Nikodym sets, Proc. Amer. Math. Soc. 86 (1982), 307-311.
- C. Stegall, The Radon Nikodym property in conjugate Banach spaces. II, Trans. Amer. Math. Soc. 264 (1981), 507-519.
- 17. M. Takesaki, Theory of operator algebras. I, Springer-Verlag, Berlin and New York, 1979.
- 18. E. E. Granirer, Exposed points of convex sets and weak sequential convergence, Mem. Amer. Math. Soc. No. 123 (1972).
- Geometric and topological properties of certain w* compact convex subsets of double duals of Banach spaces which arise from the study of invariant means, Illinois J. Math. 30 (1986), 148-174.
- 20. K. Schmidt, Amenability, Kazhdan's property T, strong ergodicity and invariant means for ergodic group actions, Ergodic Theory Dynamical Systems 1 (1981), 223-236.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, CANADA